Water quality improvement through bioretention media: nitrogen and phosphorus removal

Water Environ Res. 2006 Mar;78(3):284-93. doi: 10.2175/106143005x94376.

Abstract

High nutrient inputs and eutrophication continue to be one of the highest priority water quality problems. Bioretention is a low-impact development technology that has been advocated for use in urban and other developed areas. This work provides an in-depth analysis on removal of nutrients from a synthetic stormwater runoff by bioretention. Results have indicated good removal of phosphorus (70 to 85%) and total Kjeldahl nitrogen (55 to 65%). Nitrate reduction was poor (< 20%) and, in several cases, nitrate production was noted. Variations in flowrate (intensity) and duration had a moderate affect on nutrient removal. Mass balances demonstrate the importance of water attenuation in the facility in reducing mass nutrient loads. Captured nitrogen can be converted to nitrate between storm events and subsequently washed from the system. Analysis on the fate of nutrients in bioretention suggests that accumulation of phosphorus and nitrogen may be controlled by carefully managing growing and harvesting of vegetation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Agriculture
  • Ecosystem
  • Environmental Monitoring
  • Eutrophication
  • Fertilizers
  • Nitrates / analysis
  • Nitrogen / isolation & purification*
  • Phosphorus / isolation & purification*
  • Rain
  • Water Movements
  • Water Pollutants, Chemical / isolation & purification*
  • Water Purification / methods*
  • Water Supply*

Substances

  • Fertilizers
  • Nitrates
  • Water Pollutants, Chemical
  • Phosphorus
  • Nitrogen