Senescence-associated beta-galactosidase is lysosomal beta-galactosidase

Aging Cell. 2006 Apr;5(2):187-95. doi: 10.1111/j.1474-9726.2006.00199.x.

Abstract

Replicative senescence limits the proliferation of somatic cells passaged in culture and may reflect cellular aging in vivo. The most widely used biomarker for senescent and aging cells is senescence-associated beta-galactosidase (SA-beta-gal), which is defined as beta-galactosidase activity detectable at pH 6.0 in senescent cells, but the origin of SA-beta-gal and its cellular roles in senescence are not known. We demonstrate here that SA-beta-gal activity is expressed from GLB1, the gene encoding lysosomal beta-D-galactosidase, the activity of which is typically measured at acidic pH 4.5. Fibroblasts from patients with autosomal recessive G(M1)-gangliosidosis, which have defective lysosomal beta-galactosidase, did not express SA-beta-gal at late passages even though they underwent replicative senescence. In addition, late passage normal fibroblasts expressing small-hairpin interfering RNA that depleted GLB1 mRNA underwent senescence but failed to express SA-beta-gal. GLB1 mRNA depletion also prevented expression of SA-beta-gal activity in HeLa cervical carcinoma cells induced to enter a senescent state by repression of their endogenous human papillomavirus E7 oncogene. SA-beta-gal induction during senescence was due at least in part to increased expression of the lysosomal beta-galactosidase protein. These results also indicate that SA-beta-gal is not required for senescence.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cells, Cultured
  • Cellular Senescence*
  • Fibroblasts / cytology
  • Fibroblasts / pathology
  • Gangliosidoses / enzymology
  • HeLa Cells
  • Humans
  • Lysosomes / enzymology*
  • Mutation / genetics
  • RNA Interference
  • beta-Galactosidase / genetics
  • beta-Galactosidase / metabolism*

Substances

  • GLB1 protein, human
  • beta-Galactosidase