To explore sex differences in the response of seven brain regions to an aversive pelvic visceral stimulus, functional magnetic resonance images were acquired from 13 healthy adults (6 women) during 15 s of cued rectal distension at two pressures: 25 mmHg (uncomfortable), and 45 mmHg (mild pain), as well as during an expectation condition (no distension). Random-effects analyses combining subject data voxelwise found 45-mmHg pressure significantly activated the insular and anterior cingulate cortices in both sexes. In men only, the left thalamus and ventral striatum were also activated. Although all activations appeared more extensive in men, no sex difference attained significance. To explore the presence of deactivations, which are generally cancelled by more numerous activations when subjects are combined for each voxel, the number of activated voxels, number of deactivated voxels, and ratio of deactivated voxels to total voxels affected were assessed via random-effects, mixed-model analyses combining subject data at the region level. Greater insula activation in men compared with women was seen during the expectation condition and during the 25-mmHg distension. Greater deactivations in women were seen in the amygdala (25-mmHg distension) and midcingulate (45-mmHg distension). Women had a significantly higher proportion of deactivated voxels than men in all four subcortical structures during 25-mmHg distension. Greater familiarity of females with physiological pelvic visceral discomfort may have enhanced brain systems that dampen arousal networks during lower levels of discomfort.