Arabidopsis ARGONAUTE1 (AGO1) encodes the RNA slicer enzyme of the microRNA (miRNA) pathway and is regulated by miR168-programmed, AGO1-catalyzed mRNA cleavage. Here, we describe two additional regulatory processes required for AGO1 homeostasis: transcriptional coregulation of MIR168 and AGO1 genes, and posttranscriptional stabilization of miR168 by AGO1. Disrupting any of these regulatory processes by using mutations or transgenes disturbs a proper functioning of the miRNA pathway. In contrast, minor perturbation leads to fine-tuned posttranscriptional adjustment of miR168 and AGO1 levels, thereby maintaining a proper balance of other miRNAs, which, together with AGO1, control the mRNA levels of miRNA targets. We suggest that miR168 stabilization occurs at the level of silencing-complex assembly and that modulating the efficiency of assembling miRNA-programmed silencing complexes will also be important in other contexts.