AML1-ETO, a leukemia-associated fusion protein generated by the frequently occurred chromosome translocation t(8;21) in acute myeloid leukemia, was shown to exert dichotomous functions in leukemic cells, that is, growth arrest versus differentiation block. By the analysis of oligonucleotide microarray, AML1-ETO was shown to modulate the expressions of an impressive array of pro- and anti-apoptotic genes. Here, we investigate potential effects of the ecdysone inducible AML1-ETO expression on apoptosis of leukemic U937 cell line. We show that AML1-ETO significantly stabilizes death receptor Fas protein and increases proapoptotic Bak in addition to reducing Bcl-2 expression. Accordingly, inducible AML1-ETO expression is followed by apoptosis to a lower degree. Especially, AML1-ETO endows leukemic cells with the susceptibility to anti-Fas agonist antibody, ultraviolet light and camptothecin analog NSC606985-induced apoptosis with increased activation of caspase-3/8. Considering that apoptosis-enhancing effect of AML1-ETO would not be favorable to the leukemogenesis harboring the t(8;21) translocation, it must be overcome to fulfill their leukemogenic potential. Complementary to this prediction is that two AML1-ETO-carrying leukemic cells, Kasumi-1 and SKNO-1, present similar sensitivity to apoptosis induction with AML1-ETO-negative leukemic cells. Therefore, genetic and/or epigenetic screenings of apoptosis-related genes modulated by AML1-ETO deserve to be explored for understanding the mechanisms of AML1-ETO-induced leukemogenesis.