In postnatal organisms, insulin is well known as an essential anabolic hormone responsible for maintaining glucose homeostasis. Its biosynthesis by the pancreatic beta cell has been considered a model of tissue-specific gene expression. However, proinsulin mRNA and protein have been found in embryonic stages before the formation of the pancreatic primordium, and later, in extrapancreatic tissues including the nervous system. Phylogenetic studies have also confirmed that production of insulin-like peptides antecedes the morphogenesis of a pancreas, and that these peptides contribute to normal development. In recent years, other roles for insulin distinct from its metabolic function have emerged also in vertebrates. During embryonic development, insulin acts as a survival factor and is involved in early morphogenesis. These findings are consistent with the observation that, at these stages, the proinsulin gene product remains as the precursor form, proinsulin. Independent of its low metabolic activity, proinsulin stimulates proliferation in developing neuroretina, as well as cell survival and cardiogenesis in early embryos. Insulin/proinsulin levels are finely regulated during development, since an excess of the protein interferes with correct morphogenesis and is deleterious for the embryo. This fine-tuned regulation is achieved by the expression of alternative embryonic proinsulin transcripts that have diminished translational activity.