Background: Alterations in maternal folate and homocysteine metabolism are associated with neural tube defects (NTDs). The role played by specific micronutrients and metabolites in the causal pathway leading to NTDs is not fully understood.
Methods: We conducted a case-control study to investigate the association between NTDs and maternal alterations in plasma micronutrients and metabolites in two metabolic pathways: methionine remethylation and glutathione transsulfuration. Biomarkers were measured in a population-based sample of women who had NTD-affected pregnancies (n = 43) and a control group of women who had a pregnancy unaffected by a birth defect (n = 160). We compared plasma concentrations of folate, vitamin B(12), vitamin B(6), methionine, S-adenosylmethionine (SAM), s-adenosylhomocysteine (SAH), adenosine, homocysteine, cysteine, and reduced and oxidized glutathione between cases and controls after adjusting for lifestyle and sociodemographic factors.
Results: Women with NTD-affected pregnancies had significantly higher plasma concentrations of SAH (29.12 vs. 23.13 nmol/liter, P = .0011), adenosine (0.323 vs. 0.255 mumol/liter; P = .0269), homocysteine (9.40 vs. 7.56 micromol/liter; P < .001), and oxidized glutathione (0.379 vs. 0.262 micromol/liter; P = .0001), but lower plasma SAM concentrations (78.99 vs. 83.16 nmol/liter; P = .0172) than controls. This metabolic profile is consistent with reduced methylation capacity and increased oxidative stress in women with affected pregnancies.
Conclusions: Increased maternal oxidative stress and decreased methylation capacity may contribute to the occurrence of NTDs. Further analysis of relevant genetic and environmental factors is required to define the basis for these observed alterations.