A fairly large set of protein interactions is mediated by families of peptide binding domains, such as Src homology 2 (SH2), SH3, PDZ, major histocompatibility complex, etc. To identify their ligands by experimental screening is not only labor-intensive but almost futile in screening low abundance species due to the suppression by high abundance species. An ideal way of studying protein-protein interactions is to use high throughput computational approaches to screen protein sequence databases to direct the validating experiments toward the most promising peptides. Predictors with only good cross-validation were not good enough to screen protein databases. In the current study we built integrated machine learning systems using three novel coding methods and screened the Swiss-Prot and GenBank protein databases for potential ligands of 10 SH3 and three PDZ domains. A large fraction of predictions has already been experimentally confirmed by other independent research groups, indicating a satisfying generalization capability for future applications in identifying protein interactions.