Braun/murein lipoprotein (Lpp) is one of the major outer membrane components of gram-negative enteric bacteria involved in inflammatory responses and septic shock. In previous studies, we reported that two copies of the lipoprotein (lpp) gene (designated as lppA and lppB) existed on the chromosome of Salmonella enterica serovar Typhimurium. Deletion of both lppA and lppB genes rendered Salmonella defective in invasion, motility, induction of cytotoxicity, and production of inflammatory cytokines/chemokines. The lppAB double-knockout (DKO) mutant was attenuated in mice, and animals immunized with this mutant were protected against subsequent challenge with lethal doses of wild-type (wt) S. Typhimurium. To better understand how deletion of the lpp gene might affect Salmonella virulence, we performed global transcriptional profiling of the genes in the wt and the lppAB DKO mutant of S. Typhimurium using microarrays. Our data revealed alterations in the expression of flagellar genes, invasion-associated type III secretion system genes, and transcriptional virulence gene regulators in the lppAB DKO mutant compared to wt S. Typhimurium. These data correlated with the lppAB DKO mutant phenotype and provided possible mechanism(s) of Lpp-associated attenuation in S. Typhimurium. Although these studies were performed in in vitro grown bacteria, our future research will be targeted at global transcriptional profiling of the genes in in vivo grown wt S. Typhimurium and its Lpp mutant.