In this study we report that in vitro activation of T cells increased the cyclic AMP response to subsequent prostaglandin E2 (PGE2) stimulation severalfold per cell. This sensitization of T cells to PGE2-induced cyclic AMP generation was observed when the T cells had been stimulated in vitro for 5 days with either the CD3 monoclonal antibody OKT3, phytohemagglutinin, or the combination phytohemagglutinin plus the phorbol ester PMA. Enhanced cyclic AMP generation following mitogenic activation was seen in response to both PGE2 and forskolin, direct activator of the adenylate cyclase, indicating that the amount of adenylate cyclase had increased during the in vitro activation course. In order to investigate whether various T cell subsets in general and in vivo activated T cells in particular would differ in their susceptibility to PGE2, we isolated CD4+, CD8+, CD4-CD8-, CD4+CD45RO+ ("memory"), and CD4+CD45RA+ ("virgin") T cells and studied PGE2-mediated inhibition of CD3-induced proliferation, as well as cyclic AMP generation in response to PGE2, respectively. We found that CD8+ T cells are more susceptible to PGE2 inhibition and produce more cyclic AMP than CD4+ T cells. Double-negative T cells (enriched for gamma delta T cell receptor positive cells) were found to be sensitive to PGE2 as well. Within the CD4+ T cell population, CD45RO+ ("memory") T cells were significantly more sensitive to PGE2-mediated suppression than CD45RA+ ("virgin") T cells. CD45RO+ cells required a 10-fold lower dose of PGE2 for half-maximum suppression of proliferation. However, no difference in cyclic AMP production could be demonstrated between these two subsets. We propose that substantial heterogeneity exists among peripheral blood T lymphocyte subsets regarding their sensitivity to the immunosuppressive action of PGE2 and that the sensitivity of individual cells changes in the course of an immune response.