Early islet cell loss is a significant problem in clinical islet cell transplantation. Diverse stress stimuli induce innate immune responses in islets that contribute to beta-cell dysfunction, inflammation, and loss. Here, we show that cytokine-stimulated murine islets express multiple inflammatory chemokines that recruit T-cells and thereby impair islet function in vitro and in vivo. Both nonislet ductal and exocrine elements and the individual islet cellular components contribute to this innate immune response. CD4+ CD25+ regulatory T-cells inhibit islet chemokine expression through a cell contact-dependent, soluble factor-independent mechanism and inhibit effector T-cell migration to the islet. Regulatory T-cells can also migrate to stimulated islets. Cotransfer of regulatory T-cells with islets in a transplantation model prevents islet innate immune responses and inflammation and preserves normal architecture and engraftment. Regulatory T-cell inhibition of multiple components of innate immune responses may be a fundamental aspect of their function that influences ischemia-reperfusion injury and adaptive immunity.