Glucagon secretion and autonomic signaling during hypoglycemia in late pregnancy

Am J Physiol Regul Integr Comp Physiol. 2006 Sep;291(3):R788-95. doi: 10.1152/ajpregu.00125.2006. Epub 2006 Mar 23.

Abstract

We examined net pancreatic norepinephrine (NE) spillover, pancreatic polypeptide (PP) release, and the decrement in C-peptide to identify factors involved in the blunted counterregulatory glucagon response in pregnancy. Conscious pregnant [pregnant hypoglycemic (Ph); 3rd trimester; n = 8] and nonpregnant [nonpregnant hypoglycemic (NPh); n = 6] dogs were studied during insulin-induced (approximately 12-fold basal insulin concentrations) hypoglycemia (plasma glucose 3.1 mM). Additional dogs were studied during hyperinsulinemic euglycemia [nonpregnant euglycemic (NPe), n = 4; pregnant euglycemic (Pe), n = 5; plasma glucose 6 mM]. Arterial glucagon concentrations declined similarly in NPe and Pe. Areas under the curve (AUCs) of the changes in glucagon and epinephrine were seven- and threefold greater in NPh than Ph (P < 0.05 between groups for both). Glucagon secretion fell below basal in NPe, Pe, and Ph but rose significantly in NPh. C-peptide declined 0.25 +/- 0.06, 0.12 +/- 0.11, 0.28 +/- 0.05, and 0.13 +/- 0.02 ng/ml in NPe, Pe, NPh, and Ph, respectively (P < 0.05, NPh vs. Ph). AUCs of NE spillover were 516 +/- 274, 265 +/- 303, 506 +/- 94, and -63 +/- 79 ng, respectively (P < 0.05, NPh vs. Ph). The AUC of PP release was approximately threefold greater in NPh than Ph (P < 0.05) but not different between euglycemic groups. The current evidence strongly suggests that the blunting of glucagon secretion during insulin-induced hypoglycemia in pregnancy is related to generalized impairment of a number of different signals, including parasympathetic and sympathoadrenal stimuli and altered sensing of circulating and/or intraislet insulin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autonomic Nervous System / metabolism*
  • Blood Glucose / physiology
  • Dogs
  • Female
  • Glucagon / blood
  • Glucagon / metabolism*
  • Glucose Clamp Technique
  • Hypoglycemia / metabolism*
  • Insulin / blood
  • Pancreas / metabolism
  • Pregnancy
  • Progesterone / blood
  • Signal Transduction / physiology*
  • Time Factors

Substances

  • Blood Glucose
  • Insulin
  • Progesterone
  • Glucagon