A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1

Appl Environ Microbiol. 1995 Sep;61(9):3353-8. doi: 10.1128/aem.61.9.3353-3358.1995.

Abstract

We have characterized a biphenyl degrader, Rhodococcus sp. strain RHA1. Biphenyl-grown cells of strain RHA1 efficiently transformed 45 components in the 62 major peaks of a polychlorinated biphenyl (PCB) mixture of Kanechlors 200, 300, 400, and 500 within 3 days, which includes mono- to octachlorobiphenyls. Among the intermediate metabolites of PCB transformation, di- and trichlorobenzoic acids were identified. The gradual decrease of these chlorobenzoic acids during incubation indicated that these chlorobenzoic acids would also be degraded by this strain. The effect of the position of chlorine substitution was determined by using PCB mixtures that have chlorine substitutions mainly at either the ortho or the meta position. This strain transformed both types of congeners, and strong PCB transformation activity of RHA1 was indicated. RHA1 accumulated 4-chlorobenzoic acid temporally during the transformation of 4-chlorobiphenyl. The release of most chloride in the course of 2,2(prm1)-dichlorobiphenyl degradation was observed. These results suggested that RHA1 would break down at least some PCB congeners into smaller molecules to a considerable extent.