Differential induction of tumor necrosis factor alpha in ovine pulmonary alveolar macrophages following infection with Corynebacterium pseudotuberculosis, Pasteurella haemolytica, or lentiviruses

Infect Immun. 1991 Sep;59(9):3254-60. doi: 10.1128/iai.59.9.3254-3260.1991.

Abstract

Soluble mediators such as tumor necrosis factor alpha (TNF-alpha) may be important in the pathogenesis of many chronic pulmonary infections. We examined the ability of Corynebacterium pseudotuberculosis, Pasteurella haemolytica, and ovine lentiviruses (OvLV) to induce TNF-alpha secretion by pulmonary alveolar macrophages (PAM). Bronchoalveolar lavage cells, composed of greater than 90% PAM, were obtained from normal sheep. Bronchoalveolar lavage cells were cultured for 2, 24, 48, 72, or 168 h in endotoxin-free RPMI medium (with 10% autologous serum) or in medium containing one of the following additives: lipopolysaccharide, 1-micron polystyrene beads, C. pseudotuberculosis, P. haemolytica, or one of two plaque-cloned OvLV, 85/28 or 85/34. Lipopolysaccharide, C. pseudotuberculosis, and P. haemolytica induced TNF-alpha activity in PAM cultures as early as 2 h after inoculation, as assessed by a colorimetric cytotoxicity assay. This activity could be blocked by rabbit anti-recombinant bovine TNF-alpha serum. In contrast, medium alone, polystyrene beads, and productive infection by OvLV did not induce TNF-alpha activity in PAM cultures. Bacterial pathogens which infect pulmonary macrophages may elicit the secretion of TNF-alpha within the lungs and lead to the cachectic state associated with chronic pneumonia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bronchoalveolar Lavage Fluid / microbiology*
  • Cells, Cultured
  • Corynebacterium / immunology*
  • Immunoblotting
  • Kinetics
  • Lentivirus / immunology*
  • Lung Diseases / immunology
  • Lung Diseases / microbiology*
  • Macrophages / microbiology*
  • Macrophages / ultrastructure
  • Microspheres
  • Pasteurella / immunology*
  • Recombinant Proteins
  • Sheep
  • Tumor Necrosis Factor-alpha / biosynthesis*

Substances

  • Recombinant Proteins
  • Tumor Necrosis Factor-alpha