A series of dithieno[3,2-b:2',3'-d]phosphole-based transition metal complexes, including Au, Fe, Pt, Rh and W as central metals have been synthesised and characterised. Structural investigations by X-ray single crystal crystallography supported the high degree of pi-conjugation in the dithienophosphole ligands. This essential requirement for potential applications in molecular electronics and optoelectronics provides small band gaps for the materials. Investigations toward the optoelectronic properties of the respective complexes by fluorescence spectroscopy indicated that systematic alterations of the electronic structure are connected to different variables such as transition metal employed, functionalisation of the dithienophosphole ligands as well as complex geometries. The investigated Pt-based complexes exhibit only poor photoluminescence whereas Rh-, W- and Fe-based species with silyl functionalised dithienophosphole ligands show appreciable photophysical properties. The Au complexes investigated exhibit strong photoluminescence properties with very intriguing features in terms of excitation and emission wavelengths, intensity as well as selectivity.