Band structures in the region of strong infrared absorption bands for different N2O-12CO2 and 12CO2-13CO2 composite particles are investigated by combining quantum mechanical exciton calculations with systematic experimental investigations. The ice particles are generated by collisional cooling and characterized with rapid-scan infrared spectroscopy. The size of the particles lies between approximately 10 and 100 nm. The calculated spectra show excellent agreement with the experimental data. This work leads to a detailed understanding on a molecular level of shape effects in pure and statistically mixed particles as well as of the characteristic features observed for core-shell particles.