Challenging the spliceosome machine

Genome Biol. 2006;7(1):R3. doi: 10.1186/gb-2006-7-1-r3. Epub 2006 Jan 17.

Abstract

Background: Using cDNA copies of transcripts and corresponding genomic sequences from the Berkeley Drosophila Genome Project, a set of 24,753 donor and acceptor splice sites were computed with a scanning algorithm that tested for single nucleotide insertion, deletion and substitution polymorphisms. Using this dataset, we developed a progressive partitioning approach to examining the effects of challenging the spliceosome system.

Results: Our analysis shows that information content increases near splice sites flanking progressively longer introns and exons, suggesting that longer splice elements require stronger binding of spliceosome components. Information also increases at splice sites near very short introns and exons, suggesting that short splice elements have crowding problems. We observe that the information found at individual splice sites depends upon a balance of splice element lengths in the vicinity, including both flanking and non-adjacent introns and exons.

Conclusion: These results suggest an interdependence of multiple splicing events along the pre-mRNA, which may have implications for how the macromolecular spliceosome machine processes sets of neighboring splice sites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Composition
  • Base Pair Mismatch
  • DNA, Complementary / genetics
  • Drosophila / genetics
  • Exons / genetics
  • Introns / genetics
  • Polymorphism, Genetic
  • RNA Splice Sites / genetics
  • RNA Splicing*
  • Sequence Analysis, DNA
  • Spliceosomes / metabolism*

Substances

  • DNA, Complementary
  • RNA Splice Sites