Lipopolysaccharide-induced liver apoptosis is increased in interleukin-10 knockout mice

Biochim Biophys Acta. 2006 Apr;1762(4):468-77. doi: 10.1016/j.bbadis.2005.12.012. Epub 2006 Feb 13.

Abstract

Although IL-10 down-regulates pro-inflammatory cytokine secretion by hepatic Kupffer cells, the mechanisms underlying its hepatoprotective effects are not fully clear. This study tested the hypothesis that IL-10 protects the liver against pro-inflammatory cytokines by counteracting their pro-apoptotic effects. Wild type and IL-10 knockout mice were treated with bacterial lipopolysaccharide and sacrificed 1, 4, 8, and 12 h later. Plasma ALT activity was measured as a marker of liver injury. Liver pathology and TUNEL response were assessed by histology. Plasma levels and whole liver mRNA levels were measured for TNF-alpha, IL-1 beta, TGF-beta1, IL-10, and their respective receptors. Hepatic mRNA levels were measured for several pro-apoptotic adaptors/regulators, including FasL, Fas receptor, FADD, TRADD, Bad, Bak, Bax, and Bcl-X(S), and anti-apoptotic regulators, including Bcl-w, Bcl-X(L), Bcl-2, and Bfl-1. Caspase-3 activity in the liver was determined as well as immunohistochemistry for IL-1RII, TGF-betaRII and Fas receptor. At all time points the livers from IL-10 knockout mice displayed a significantly increased number of apoptotic nuclei compared to wild type mice. Changes in plasma cytokine levels and their liver mRNA levels were consistent with suppression by IL-10 of pro-inflammatory cytokine secretion. In addition, pro-inflammatory cytokine receptor mRNA levels (TNF-alpha, TGF-beta, and IL-1 beta) were markedly up-regulated by LPS at all time points in IL-10 knockout mice as compared to wild type mice. Expression of the pro-inflammatory cytokine receptor IL-1RII was similarly increased as shown by immunostaining. The mRNA levels of a typical pro-apoptotic cytokine, TRAIL, were increased and LPS also up-regulated the mRNA expression of other apoptotic factors to a larger extent in IL-10 knockout mice than in their wild type counterparts, suggestive of an IL-10 anti-apoptotic effect. In the livers of knockout mice, markedly increased caspase-3 activity was already evident at the 1-h time point following LPS administration, while in the wild type animals this increase was delayed. Immunostaining also indicated that LPS increased hepatic expression of the pro-apoptotic receptors Fas and TGF-betaRII in IL-10 knockout mice. The data presented in this study show that: (i) IL-10 modulates not only the secretion of pro-inflammatory cytokines, but also the receptors of these cytokines, and ii) IL-10 protects the liver against LPS-induced injury at least in part by counteracting pro-inflammatory cytokine-induced liver apoptosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Alanine Transaminase / blood
  • Animals
  • Apoptosis Regulatory Proteins / metabolism
  • Apoptosis*
  • Cytokines / blood
  • Cytokines / genetics
  • Cytokines / metabolism
  • Gene Expression Regulation
  • In Situ Nick-End Labeling
  • Interleukin-10 / genetics
  • Interleukin-10 / physiology*
  • Lipopolysaccharides / pharmacology*
  • Liver / metabolism
  • Liver / pathology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • RNA, Messenger / metabolism
  • Receptors, Cytokine / genetics
  • Receptors, Cytokine / metabolism

Substances

  • Adaptor Proteins, Signal Transducing
  • Apoptosis Regulatory Proteins
  • Cytokines
  • Lipopolysaccharides
  • RNA, Messenger
  • Receptors, Cytokine
  • Interleukin-10
  • Alanine Transaminase