Nuclear factor erythroid 2-related factor (Nrf2) confers protection against cell death induced by hyperoxia and other proapoptotic stimuli. Because phosphoinositide-3-kinase (PI3K)/Akt signaling promotes cell survival, the significance of this pathway in mediating reactive oxygen species (ROS)-dependent hyperoxia-induced Nrf2 activation was investigated in the murine pulmonary epithelial cell line, C10. Inhibition of the PI3K pathway markedly attenuated hyperoxia-induced Nrf2 translocation and ARE (antioxidant response element)-mediated transcription. Consistent with this, hyperoxia markedly stimulated the activation of PI3K pathway, while an NADPH oxidase inhibitor and an antioxidant prevented such activation. The inhibition of Akt activity using a pharmacological inhibitor markedly attenuated Nrf2 translocation and ARE-driven expression. Moreover, overexpression of a dominant-negative Akt mutant attenuated the transcription, whereas a constitutively active mutant stimulated it. These results suggest that PI3K/Akt signaling regulates Nrf2 activation by hyperoxia. Inhibition of the PI3K pathway prevented hyperoxia-stimulated Akt and ERK1/2 kinase activation, which is critical for Nrf2-mediated transcription. Likewise, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, AG1478, blocked hyperoxia-stimulated Akt and ERK1/2 phosphorylation, Nrf2 nuclear accumulation, and ARE-driven transcription. Consistent with this result, an NADPH oxidase inhibitor blocked hyperoxia- stimulated EGFR phosphorylation, which was correlated with the attenuation of Akt and ERK activation. Collectively, our data suggest that EGFR-PI3K signaling through Akt and ERK kinases regulates ROS-dependent, hyperoxia-induced Nrf2 activation in pulmonary epithelial cells.