A two-stage reactor system was developed for the continuous degradation of gas-phase trichloroethylene (TCE). Methylosinus trichosporium OB3b was immobilized on activated carbon in a TCE degradation reactor, trickling biofilter (TBF). The TBF was coupled with a continuous stirred tank reactor (CSTR) to allow recirculation of microbial cells from/to the TBF for the reactivation of inactivated cells during TCE degradation. The mass transfer aspect of the TBF was analyzed, and mass transfer coefficient of 3.9 h(-1) was estimated. The loss of soluble methane monooxygenase (sMMO) activity was modeled based on a material balance on the CSTR and TBF, and transformation capacity (T (c)) was determined to be 20.2 micromol mg(-1). Maximum TCE degradation rate of 525 mg 1(-1) d(-1) was obtained and reactor has been stably operated for more than 270 days.