New repeat sequences were found in the Drosophila ananassae genome sequence. They accounted for approximately 1.2% of the D. ananassae genome and were estimated to be more abundant in genomes of its closely related species belonging to the Drosophila bipectinata complex, whereas it was entirely absent in the Drosophila melanogaster genome. They were interspersed throughout euchromatic regions of the genome, usually as short tandem arrays of unit sequences, which were mostly 175-200 bp long with two distinct peaks at 180 and 189 bp in the length distribution. The nucleotide differences among unit sequences within the same array (locus) were much smaller than those between separate loci, suggesting within-locus concerted evolution. The phylogenetic tree of the repeat sequences from different loci showed that divergences between sequences from different chromosome arms occurred only at earlier stages of evolution, while those within the same chromosome arm occurred thereafter, resulting in the increase in copy number. We found RNA polymerase III promoter sequences (A box and B box), which play a critical role in retroposition of short interspersed elements. We also found conserved stem-loop structures, which are possibly associated with certain DNA rearrangements responsible for the increase in copy number within a chromosome arm. Such an atypical combination of characteristics (i.e., wide dispersal and tandem repetition) may have been generated by these different transposition mechanisms during the course of evolution.