Wheat germ agglutinin (WGA), a lectin that primarily reacts with N-acetylglucosamine residues, specifically inhibits the EDTA-stable type of intercellular adhesion of aggregation competent Dictyostelium discoideum cells. The major WGA-binding protein of these cells is a developmentally-regulated glycolipoprotein of 80 kd apparent mol. wt., designated as contact site A. This glycoprotein is a target site of antibody fragments that block the EDTA-stable cell adhesion, and is characterized by sulfated carbohydrate residues. WGA does not significantly bind to glycoproteins of a mutant, HL220, which produces a 68-kd component in place of the 80-kd glycoprotein. Inhibition of N-glycosylation by tunicamycin causes wild-type cells to produce a WGA-binding but unsulfated 66-kd component and a non-binding 53-kd component. These results indicate that the 80-kd glycoprotein contains two classes of carbohydrate residues, a WGA-binding one that is defective in HL220, and another, sulfated, one that is absent from the 66-kd wild-type product; both are missing in the 53-kd protein. WGA and a monoclonal antibody that is blocked by N-acetylglucosamine were further used to probe for glycoproteins in the multicellular slug stage that share carbohydrate structures - and possibly functions - with the contact site A glycoprotein. Glycoproteins in the 95-kd range have previously been implicated in cell-to-cell adhesion during the slug stage. We distinguished a 95-kd glycoprotein that binds WGA from another one that binds antibody.