Although hyperhomocysteinaemia is a risk factor for cardiovascular disease, the mechanisms underlying this association have not been elucidated. It has been demonstrated, however, that copper augments the inhibitory effect of homocysteine on nitric oxide (NO)-mediated relaxation of the rat aorta through increased superoxide formation, which reacts with NO thereby reducing the bioavailability of NO. Since it follows that the administration of a copper chelator may blunt the pathogenic impact of hyperhomocysteinaemia, in vivo, the effect of penicillamine administration on NO-dependent relaxation and superoxide formation in the aortae of hyperhomocysteinaemic rabbits was studied. New Zealand White rabbits were fed a methionine-rich (20 g/kg chow) diet for 1 month+/-penicillamine administered orally (10 mg/kg/day) and aortic relaxation elicited with acetylcholine and superoxide measured. The role of NADPH oxidase was also studied using a range of inhibitors and western analysis of gp47(phox) (a catalytic subunit of NADPH oxidase). The methionine-rich diet markedly increased plasma total homocysteine levels. In hyperhomocysteinaemic rabbits there was a marked reduction of acetylcholine-stimulated relaxation and an increase in superoxide formation that were both inhibited with superoxide dismutase and apocynin, an NADPH oxidase inhibitor. Gp47(phox) expression was also increased in aortae from methionine fed rabbits. Penicillamine administration significantly reduced plasma total copper in methionine-fed rabbits compared to controls. Impaired acetylcholine-stimulated relaxation, increased superoxide formation and increased gp47(phox) expression in aortae from methionine-fed rabbits was reversed by penicillamine administration. These data indicate that hyperhomocysteinaemia augments the formation of arterial superoxide through an increase in NADPH oxidase expression/activity which in turn reduces NO bioavailability. Since these effects were reversed by penicillamine, these data consolidate the hypothesis that copper plays a role in mediating homocysteine-induced vasculopathy.