Solvated electrons have been produced in ethylene glycol by two-photon ionization of the solvent with 263 nm femtosecond laser pulses. The two-photon absorption coefficient of ethylene glycol at 263 nm is determined to be beta = (2.1 +/- 0.2) x 10(-11) m W(-1). The dynamics of electron solvation in ethylene glycol has been studied by pump-probe transient absorption spectroscopy. So, time-resolved absorption spectra ranging from 430 to 710 nm have been measured. A blue shift of the spectra is observed for the first tens of picoseconds. Using the Bayesian data analysis method, the observed solvation dynamics are reconstructed with different models: stepwise mechanisms, continuous relaxation models, or combinations of stepwise and continuous relaxation. Comparison between models is in favor of continuous relaxation, which is mainly governed by solvent molecular motions.