The purpose of this study was to investigate the interactions between cadence and power output effects on cycling efficiency. Fourteen healthy subjects performed four constant power output-tests (40, 80, 120 and 160 W) in which the cadence varied in five bouts from 40 to 120 rpm. Gross efficiency (GE) was determined over the last ten respiratory cycles of each bout and was calculated as the ratio of mechanical energy to energy expenditure. Results showed that (1) GE-cadence relationships reached a maximum at each power output corresponding to the cadence maximising efficiency (CAeff) and (2) GE increased with power output whatever the cadence until a maximal theoretical value. Moreover, interactions were found between these two factors: the cadence effect decreased linearly with power output and the power output effect increased exponentially with cadence. Consequently, cycling efficiency decreased more when cadence differed from CAeff at low than at high power output, and increased more with power output at high cadence than at low cadence. These interactions between cadence and power output effects on GE were mainly due to cadence and power output effects on the energy expenditure shares not contributing to power production.