We investigated the presence of hydroxyacid-oxoacid transhydrogenase (HOT), which catalyses the cofactor-independent conversion of gamma-hydroxybutyrate (GHB) to succinic semialdehyde coupled to reduction of 2-ketoglutarate (2-KG) to D-2-hydroxyglutarate (D-2-HG), in human liver extracts employing [2H6]GHB and 2-KG as substrates. We measured incorporation of 2H in D-[2H]2-HG using GC-MS analyses, providing evidence for HOT activity in humans. Kinetic characterization of HOT was undertaken in forward and reverse directions. We employed [2H6]GHB and [2H4]2-KG as cosubstrates in order to develop a HOT activity assay in cultured human fibroblasts derived from patients with D-2-hydroxyglutaric aciduria. HOT activity was quantified in this system by the measurement of D-[2H5]2-HG production. Fibroblasts derived from patients with D-2-hydroxyglutaric aciduria showed normal HOT activities. Our results provide the first demonstration and preliminary kinetic characterization of HOT activity in human tissues.