This study prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran. The synthesis of the PLGA-dextran conjugate was confirmed by Fourier transform-infrared (FT-IR) spectroscopy. The PLGA grafted-dextran was able to form nanoparticles in water by self-assembly and their particle size was 245.3 +/- 95.1 nm. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values were determined from the fluorescence excitation spectra and were found to be 0.006 g l(-1). Morphological observations using a scanning electron microscope (SEM) showed that the polymeric nanoparticles of the PLGA-dextran conjugate have uniformly spherical shapes. Their size and morphology provide them with acceptable properties for use as a drug-targeting carriers. Drug release from core-shell type nanoparticles was faster in the presence of dextranase, indicating that core-shell type nanoparticles of PLGA grafted-dextran can be used as an oral drug carriers.