A conventional balanced steady-state free precession (b-SSFP) sequence scheme was modified such that the dynamic equilibrium becomes very sensitive to small cyclic displacements, generating two distinct and alternating steady states. This novel technique is proposed for the visualization of propagating transverse acoustic shear waves, as used in MR elastography (MRE) to determine the mechanical properties of materials or in vivo soft tissue. Experiments with tissue-like agarose gel phantoms and simulations demonstrate that the novel sequence offers an increase in phase sensitivity by about one order in magnitude compared to standard motion-encoding methods. In addition, the new method benefits from the very short acquisition times achieved by b-SSFP protocols.
Copyright 2006 Wiley-Liss, Inc.