The optimal control of the vibrational excitation of the hydrogen molecule [Balint-Kurti et al., J. Chem. Phys. 122, 084110 (2005)] utilizing polarization forces is extended to three dimensions. The polarizability of the molecule, to first and higher orders, is accounted for using explicit ab initio calculations of the molecular electronic energy in the presence of an electric field. Optimal control theory is then used to design infrared laser pulses that selectively excite the molecule to preselected vibrational-rotational states. The amplitude of the electric field of the optimized pulses is restricted so that there is no significant ionization during the process, and a new frequency sifting method is used to simplify the frequency spectrum of the pulse. The frequency spectra of the optimized laser pulses for processes involving rotational excitation are more complex than those relating to processes involving only vibrational excitation.