Many materials have been investigated in blood vessel tissue engineering, such as PGA, PLGA, P4HB. However, chitosan is not mentioned in the arena. This study aimed to develop a chitosan-based tubular scaffold and examine its feasibility of being applied in this field. Briefly, a knitted chitosan tube was dipped into chitosan solution (2%, w/v) and dried, then its inner and outer surface was mantled with a layer of chitosan/gelatin (4:1, w/w) complex solution, and then freeze-dehydrated. In vitro characterization showed that the scaffold had a wall of 1.0 mm in thickness with a sandwich structure, and a porosity of 81.2%. The pore diameter was 50-150 microm and could be regulated by varying freezing conditions. The scaffold possessed proper swelling property, burst strength of almost 4000 mmHg, and high suture-retention strength. After degradation for 2 months, the scaffold could maintain enough mechanical strength with an average mass loss of 18.7%. Vascular smooth muscle cells could spread and grow very well on the scaffold. This study provided a novel method to fabricate chitosan and its complex into a tubular scaffold and demonstrated the feasibility of the scaffold employed in the field of blood vessel tissue engineering.
Copyright (c) 2006 Wiley Periodicals, Inc.