A self-assembly of AgClO(4) with a Schiff-base ligand N,N'-bis(pyridin-2-ylmethylene)benzene-1,4-diamine (1) gave a 1D zigzag polymeric array [[Ag(2)(C(18)H(14)N(4))(2)](ClO(4))(2)(CH(3)CN)](n) (3), while the self-assembly of AgClO(4) with 3,3'-dimethyl-N,N'-bis(pyridin-2-ylmethylene)biphenyl-4,4'-diamine (2) afforded the molecular rectangle [[Ag(2)(C(26)H(22)N(4))(2)](ClO(4))(2)] (4). The structures of 3 and 4 were characterized by single-crystal X-ray diffraction analysis. Structural data for 3 indicate that the Ag(I) ion is coordinated by two ligands of 1 in a distorted tetrahedral fashion thereby leading to a 1D zigzag polymeric array. The zigzag chains are interdigitated with weak pi-pi stacking interactions. The structure of 4 consists of a discrete molecular rectangle where the silver atom has a distorted square-planar coordination with the pyridyl ligands and azomethine nitrogen atoms of 2. An intramolecular pi-pi interaction between the phenyl rings of adjacent Schiff-base 2 functions to stabilize the rectangular architecture. The Ag(I)-Schiff-base coordination polymer 3 is not stable in solution. The degradation and reorganization of 3 to form a [2 x 2] grid architecture [[Ag(4)(C(26)H(22)N(4))(4)](ClO(4))(4)] (3g) was supported in a FAB-MS study. The rectangular structure of 4 remains intact in solution at ambient temperature. The complexes 3g and 4 exhibit unusual luminescence behavior in solution at room temperature with significantly red-shifted emission in the visible region.