Inelastically tunneled electrons from a scanning tunneling microscope (STM) were used to induce vibrationally mediated motion of a single cis-2-butene molecule among four equivalent orientations on Pd(110) at 4.8 K. The action spectrum obtained from the motion clearly detects more vibrational modes than inelastic electron tunneling spectroscopy with a STM. We demonstrate the usefulness of the action spectroscopy as a novel single molecule vibrational spectroscopic method. We also discuss its selection rules in terms of resonance tunneling.