The PII proteins are key mediators of the cellular response to carbon and nitrogen status and are found in all domains of life. In eukaryotes, PII has only been identified in red algae and plants, and in these organisms, PII localizes to the plastid. PII proteins perform their role by assessing cellular carbon, nitrogen, and energy status and conferring this information to other proteins through protein-protein interaction. We have used affinity chromatography and mass spectrometry to identify the PII-binding proteins of Arabidopsis thaliana. The major PII-interacting protein is the chloroplast-localized enzyme N-acetyl glutamate kinase, which catalyzes the key regulatory step in the pathway to arginine biosynthesis. The interaction of PII with N-acetyl glutamate kinase was confirmed through pull-down, gel filtration, and isothermal titration calorimetry experiments, and binding was shown to be enhanced in the presence of the downstream product, arginine. Enzyme kinetic analysis showed that PII increases N-acetyl glutamate kinase activity slightly, but the primary function of binding is to relieve inhibition of enzyme activity by the pathway product, arginine. Knowing the identity of PII-binding proteins across a spectrum of photosynthetic and non-photosynthetic organisms provides a framework for a more complete understanding of the function of this highly conserved signaling protein.