Still waiting for the toll?

Immunol Lett. 2006 Apr 15;104(1-2):18-28. doi: 10.1016/j.imlet.2005.11.012. Epub 2005 Dec 5.

Abstract

Multicellular organisms including invertebrates and vertebrates live in various habitats that may be aquatic or terrestrial where they are constantly exposed to deleterious pathogens. These include viruses, bacteria, fungi, and parasites. They have evolved various immunodefense mechanisms that may protect them from infection by these microorganisms. These include cellular and humoral responses and the level of differentiation of the response parallels the evolutionary development of the species. The first line of innate immunity in earthworms is the body wall that prevents the entrance of microbes into the coelomic cavity that contains fluid in which there are numerous leukocyte effectors of immune responses. When this first barrier is broken, a series of host responses is set into motion activating the leukocytes and the coelomic fluid. The responses are classified as innate, natural, non-specific, non-anticipatory, non-clonal (germ line) in contrast to the vertebrate capacity that is considered adaptive, induced, specific, anticipatory and clonal (somatic). Specific memory is associated with the vertebrate response and there is information that the innate response of invertebrates may under certain conditions possess specific memory. The invertebrate system when challenged affects phagocytosis, encapsulation, agglutination, opsonization, clotting and lysis. At least two major leukocytes, small and large mediate lytic reactions against several tumor cell targets. Destruction of tumor cells in vitro shows that phagocytosis and natural killer cell responses are distinct properties of these leukocytes. This has prompted newer searches for immune function and regulation in other systems. The innate immune system of the earthworm has been analyzed for more than 40 years with every aspect examined. However, there are no known entire sequences of the earthworm as exists in these other invertebrates. Because the earthworm lives in soil and has been utilized as a successful monitor for pollution, there are studies that reveal up and down regulation of responses in the immune system after exposure to a variety of environmental pollutants. Moreover, there are partial sequences that appear in earthworms after exposure to environmental pollutants such as cadmium and copper. There are now attempts to define the AHR receptor crucial for intracellular signaling after exposure to pollutants, but without linking the signals to changes in the immune system. There are several pathways for signal transduction, including JAK/STAT, TOLL, TRAF PIP3, known in invertebrates and vertebrates. For resistance to pathogens, conserved signal transduction components are required and these include a Toll/IL-1 receptor domain adaptor protein that functions upstream of a conserved p38 MAP kinase pathway. This pathway may be an ancestral innate immune signaling pathway found in a putative common ancestor of nematodes, arthropods and even vertebrates. It could also help us to link pollution, innate immunity and transduction in earthworms.

Publication types

  • Review

MeSH terms

  • Animals
  • Base Sequence
  • Diptera / genetics
  • Diptera / immunology
  • Environmental Pollution
  • Evolution, Molecular
  • Immunity, Innate*
  • Killer Cells, Natural / immunology
  • Molecular Sequence Data
  • Oligochaeta / genetics
  • Oligochaeta / immunology*
  • Phagocytosis
  • Toll-Like Receptors / genetics
  • Toll-Like Receptors / immunology*

Substances

  • Toll-Like Receptors