A fast and highly efficient Kalman Filter analysis-flow injection chemiluminescence (FI-CL) method was developed to simultaneously determine trace amounts of niobium and tantalum in geological samples. The method, without the boring process of separation and dear instruments, is suitable for field scene analysis. The mixed chemiluminescence kinetic curve was analyzed by a Kalman Filter (KF) in this method to realize the simultaneous determination of niobium and tantalum. Possible interference elements in the determination were investigated. Under the selected conditions, the detection limits (3sigma, n = 11) of niobium(V) and tantalum(V) were 2.1 x 10(-3) microg g(-1) and 4.0 x 10(-3) microg g(-1), respectively, and the relative standard deviations were 4.9% and 3.3% (n = 9). The method was applied to the determination of niobium and tantalum in geological samples with satisfactory results.