In many haplochromine cichlid fish, male nuptial coloration is subject to female mate choice and plays a central role in the evolution of reproductive isolation between incipient species. Intraspecific variation in male coloration may serve as a target for diversifying sexual selection and provide a starting point for species divergence. Here, we investigated a polychromatism in Neochromis omnicaeruleus, a haplochromine from Lake Victoria, East-Africa. In this species, male coloration ranges from skyblue to yellow-red and females are grey-blue to yellow. We found that both genetic and environmental factors influence the expression of these colours during individual development. In a natural population, we found that male colour was associated with size and sexual maturity: yellow males were smaller than blue males and tended to be sexually immature. In females, size and maturity did not differ between colour types. Laboratory crosses revealed that there is a heritable component to the observed colour variation: yellow parents produced more yellow offspring than blue parents. Together with repeated aquarium observations of yellow individuals that gradually become blue, these data suggest that yellow males change to blue as they approach sexual maturity, and that the occurrence and timing of this transition is influenced by both environmental and genetic effects. The significance of this mechanism of colour expression as a possible target for divergent selection remains to be evaluated.
Copyright 2005 Wiley-Liss, Inc.