Positron emission tomography (PET) with [18F]fluorodeoxyglucose (FDG) has been established as a useful tool in the management of patients with non-small cell lung cancer and promises to be as valuable in the clinical management of other cancers. PET imaging with FDG allows the assessment of tumor glucose metabolism in vivo; however, a number of other PET tracers are being used in oncologic research to assess changes in other cellular processes associated with malignant transformation of the cell. [11C]-Labeled methionine and choline are being used to assess changes in cell membrane synthesis; however, small studies have not shown the added information from these tracers to be clinically useful. DNA synthesis can be assessed by measuring the uptake of the thymidine analog 3'-deoxy-3'-[18F]fluorothymidine, which may be more specific for evaluating malignancy without the problem of false-positive results from inflammatory lesions, as seen with FDG. Tumor hypoxia imaging with copper-labeled diacetyl-bis(N(4)-methylthiosemicarbazone) or [18F]fluoromisonidazole may provide a better method of predicting which tumors will respond best to conventional therapy. The role of PET will continue to evolve with further clinical studies using these and other new tracers.