Enhancing the Viability of Lactobacillus plantarum Inoculum by Immobilizing the Cells in Calcium-Alginate Beads Incorporating Cryoprotectants

Appl Environ Microbiol. 1990 Oct;56(10):3112-6. doi: 10.1128/aem.56.10.3112-3116.1990.

Abstract

Many literature reports have cited the importance of the rehydration conditions of lyophilized cultures in determining viability. The rate of rehydration and the volume of fluid used have been identified as two important factors. One possible means of controlling these is by immobilizing the cells before lyophilization within a gel matrix in which the subsequent rehydration rate and fluid volume would be controlled by the properties of the gel. In this study Lactobacillus plantarum was immobilized and lyophilized in Ca-alginate beads in which 1 M glycerol or 0.75 M adonitol with skim milk were incorporated as a cryoprotectant. The properties of these Ca-alginate beads were examined before and after lyophilization and rehydration. The beads incorporating glycerol were smaller and stronger than those with adonitol. After lyophilization, size decreased and strength increased but to a greater extent in the beads with glycerol, indicating that the microenvironment within the two bead types was probably different. The protective effect of the bead microenvironment on immobilized L. plantarum was also examined. Lyophilization and rehydration within the alginate beads with either polyol yielded higher survival rates than that attained with free cell cultures during rehydration in optimal or suboptimal conditions. During rehydration under suboptimal conditions, the immobilized cell survival was greatest when 0.75 M adonitol was the incorporated cryoprotectant.