Chromosomal evidence of incipient speciation in the Afrotropical malaria mosquito Anopheles funestus

Med Vet Entomol. 2005 Dec;19(4):458-69. doi: 10.1111/j.1365-2915.2005.00595.x.

Abstract

The analysis of chromosomal polymorphism of paracentric inversions in anopheline mosquitoes has often been instrumental to the discovery of sibling species complexes and intraspecific genetic heterogeneities associated with incipient speciation processes. To investigate the population structure of Anopheles funestus Giles (Diptera: Culicidae), one of the three most important vectors of human malaria in sub-Saharan Africa, a three-year survey of chromosomal polymorphism was carried out on 4,638 karyotyped females collected indoors and outdoors from two villages of central Burkina Faso. Large and temporally stable departures from Hardy-Weinberg equilibrium due to significant deficits of heterokaryotypes were found irrespective of the place of capture, and of the spatial and temporal units chosen for the analysis. Significant linkage disequilibrium was observed among inversion systems on independently assorting chromosomal arms, indicating the existence of assortative mating phenomena. Results were consistent with the existence of two chromosomal forms characterized by contrasting degrees of inversion polymorphism maintained by limitations to gene flow. This hypothesis was supported by the reestablishment of Hardy-Weinberg and linkage equilibria when individual specimens were assigned to each chromosomal form according to two different algorithms. This pattern of chromosomal variability is suggestive of an incipient speciation process in An. funestus populations from Burkina Faso.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anopheles / genetics*
  • Anopheles / physiology
  • Burkina Faso
  • Chromosome Inversion / genetics*
  • Female
  • Genetic Speciation*
  • Genetics, Population*
  • Karyotyping
  • Linkage Disequilibrium
  • Polymorphism, Genetic*