Purpose: Vinflunine (VFL) is a novel third generation Vinca alkaloid with superior antitumour activity in preclinical models and an anticipated more favourable toxicity profile compared to the other Vinca alkaloids.
Method: We investigate the radiosensitising properties of VFL and its cell cycle effects in four human tumour cell lines (ECV304, MCF-7, H292, and CAL-27). The sulforhodamine B test was used to determine cell survival, and cell cycle analysis was performed by flow cytometry. Radiosensitisation (RS) was represented by dose enhancement factors (DEFs).
Results: Twenty-four hours treatment with VFL before radiation caused dose-dependent RS in all cell lines. This was most pronounced in ECV304 cells with RS already at VFL concentrations that reduced cell survival by 10% (IC10). DEFs ranged from 1.57 to 2.29 in the different cell lines. A concentration-dependent G2/M block was observed (starting at 4 h of incubation). After maximal G2/M blockade cells started cycling again, mainly by mitosis, while a small portion of cells started a polyploid cell cycle. Also drug removal immediately caused recycling of cells and induction of a polyploid cell population. The polyploid cell population was most impressively noticeable after prolonged incubation with VFL (48 h), in particular in CAL-27 and ECV304. This was never observed in a tested normal fibroblast cell line (Fi 360). The fate of these cells is of particular interest, but yet uncertain.
Conclusion: VFL has radiosensitising potential. The exact role of the cell cycle effects of VFL in its radiosensitising mechanism is still not fully elucidated and requires further study.