Although a significant negative prognostic factor, tumor hypoxia can be exploited for gene therapy. To maximize targeting within the tumor mass, we have developed synthetic gene promoters containing hypoxia-responsive elements (HREs) from the erythropoietin (Epo) gene as well as radiation-responsive CArG elements from the early growth response (Egr) 1 gene. Furthermore, to achieve high and sustained expression of the suicide gene herpes simplex virus thymidine kinase (HSVtk), our gene therapy vectors contain an expression amplification system, or 'molecular switch', based on Cre/loxP recombination. In human glioma and breast adenocarcinoma cells exposed to hypoxia and/or radiation, the HRE/CArG promoter rapidly activated Cre recombinase expression leading to selective and sustained HSVtk synthesis. Killing of transfected tumor cells was measured after incubation with the prodrug ganciclovir (GCV; converted by HSVtk into a cytotoxin). In vitro, higher and more selective GCV-mediated toxicity was achieved with the switch vectors, when compared with the same inducible promoters driving HSVtk expression directly. In tumor xenografts implanted in nude mice, the HRE/CArG-switch induced significant growth delay and tumor eradication. In conclusion, hypoxia- and radiation-activated 'molecular switch' vectors represent a promising strategy for both targeted and effective gene therapy of solid tumors.