We present a theoretical study of the structure and electronic properties of positively charged C60(q+) and C58(q+) fullerenes (q = 0-14). Electronic energies and optimum geometries have been obtained using density-functional theory with the B3LYP functional for exchange and correlation. We have found that closed- and semiclosed-shell C60(q+) ions (q = 0, 5, and 10) preserve the original icosahedral symmetry of neutral C60. For other charges, significant distortions have been obtained. The C58(q+) fullerenes are, in general, less symmetric, being C58(8+) the closest to the spherical shape. Most C60(q+) fullerenes follow Hund's rule for spin multiplicity, while most C58(q+) fullerenes are more stable with the lowest spin multiplicity. The calculated ionization potentials for both kinds of fullerenes increase almost linearly with charge, except in the vicinity of C60(10+) and C58(8+). We have also explored the region of the potential-energy surface of C60(q+) that leads to asymmetric fission. Minima and transition states corresponding to the last steps of the fission process have been obtained. This has led us to conclude that, for 3 < or = q < or = 8, C2(+) emission is the preferred fragmentation channel, whereas, for higher q values, emission of two charged atomic fragments is more favorable. The corresponding fission barrier vanishes for q > 14.