Background: Whether mechanical restraint of the left ventricle (LV) can influence remodeling following myocardial infarction (MI) remains poorly understood. The following discussion details three studies examining the effects of surgically placing a cardiac support device (CSD) over the entire epicardial surface, on infarct expansion, global cardiac function and myocyte geometry and function post-MI.
Methods: The effects of passive constraint on infarct expansion and global cardiac function/myocardial energetics were investigated in 10 sheep (5 MI only; 5 MI + CSD) using pressure-volume analysis and magnetic resonance imaging (MRI). Additionally, 11 sheep (5 MI only; 6 MI + CSD) were used to study the effects of passive restraint on myocyte geometry and function post-MI, with 10 additional uninstrumented sheep serving as controls. Baseline data was collected followed by the creation of an anterior infarct. 1 week post-infarct the animals underwent a second set of data collection studies followed by placement of the CSD in the experimental groups. Additional data was collected at 2 and 3 months post-MI. The animals in the myocyte function group underwent additional studies immediately following the 3 month time point.
Results: Infarct expansion was diminished as a result of the CSD. At 1 week post-MI the akinetic area was similar in both groups. At the terminal time-point, the akinetic area in the control group was similar to the 1-week time-point whereas, in the CSD group, the area of akinesis decreased (P = 0.001). A comparison of the two groups at the terminal time-point demonstrates a significantly diminished area of akinesis in the CSD group (P = 0.004). The relative area of akinesis followed a similar pattern. The CSD group also exhibited a decrease in end-diastolic volume (control 110.3 +/- 19.8 mL vs. CSD 67.6 +/- 4.7 mL, P = .006) and an improved ejection fraction (control 15.5% +/- 5.7% vs. CSD 29.46% +/- 4.42%, P = .008) relative to the control group. Myocardial energetics were also enhanced in the CSD group as evidenced by significant improvements in potential energy (control 2,015 +/- 503 mL x mm Hg/beat vs. CSD 885 +/- 220 mL x Hg/beat, P = .006), efficiency (control 39.4% +/- 13.6% vs. CSD 59.8% +/- 8.5%, P = .044), and oxygen consumption (control 0.072 +/- 0.013 mL O(2)/beat vs. CSD 0.052 +/- 0.007 mL O(2)/beat, P = .034). Isolated LV myocyte shortening velocity was reduced by 35% from control values (P < 0.05) in both MI groups. LV myocyte beta-adrenergic response was reduced with MI, but normalized in the MI + CSD group. Relative collagen content was increased and matrix metalloproteinase-9 was decreased within the MI border region of the CSD group.
Conclusions: The CorCap cardiac support device retarded infarct expansion, improved global and regional cardiac function and beneficially modified LV and myocyte remodeling post-MI. These findings provide evidence that non-pharmacological strategies can interrupt adverse LV remodeling post-MI.