11C-labeling of n-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]arylcarboxamide derivatives and evaluation as potential radioligands for PET imaging of dopamine D3 receptors

J Med Chem. 2005 Nov 3;48(22):7018-23. doi: 10.1021/jm050171k.

Abstract

The selective dopamine D(3) receptor ligands N-4-[4-[(2,3-dichlorophenyl)piperazin-1-yl]butyl]1-methoxy-2-naphthalencarboxamide (1) and N-4-[4-[(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-methoxy-2-benzofurancarboxamide (2) were labeled with (11)C (t(1/2) = 20.4 min) as potential radioligands for the noninvasive assessment of the dopamine D(3) neurotransmission system in vivo with positron emission tomography (PET). The radiosynthesis consisted in an O-methylation of the des-methyl precursors N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-1-hydroxy-2-naphthalenecarboxamide (3) and N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-hydroxy-2-benzofurancarboxamide (4) with [(11)C]methyl iodide using tBuOK/HMPA and KOH/DMSO, respectively. The radiotracers [(11)C]1 and [(11)C]2 were obtained in 35 min with over 99% radiochemical purity, 74 +/- 37 GBq/mumol of specific radioactivity, 13% and 26% radiochemical yield (EOB, decay-corrected). Distribution studies in rats demonstrated that the new tracers [(11)C]1 and [(11)C]2 cross the blood-brain barrier and localize in the brain. However, the kinetics of cerebral uptake did not reflect the regional expression of the D(3) receptors. Despite their in vitro pharmacological profile, [(11)C]1 and [(11)C]2 do not display an in vivo behavior suitable to image D(3) receptor expression using PET.

MeSH terms

  • Amides / chemical synthesis*
  • Amides / chemistry
  • Amides / pharmacokinetics
  • Animals
  • Autoradiography
  • Blood-Brain Barrier / diagnostic imaging
  • Blood-Brain Barrier / metabolism
  • Brain / diagnostic imaging
  • Brain / metabolism*
  • Carbon Radioisotopes
  • Ligands
  • Male
  • Piperazines / chemical synthesis*
  • Piperazines / chemistry
  • Piperazines / pharmacokinetics
  • Positron-Emission Tomography
  • Radiopharmaceuticals / chemical synthesis*
  • Radiopharmaceuticals / chemistry
  • Radiopharmaceuticals / pharmacokinetics
  • Rats
  • Receptors, Dopamine D3 / metabolism*
  • Structure-Activity Relationship
  • Tissue Distribution

Substances

  • Amides
  • Carbon Radioisotopes
  • Ligands
  • Piperazines
  • Radiopharmaceuticals
  • Receptors, Dopamine D3