Hepatitis B virus X protein (HBx) has many cellular functions and is a major factor in hepatitis and hepatocellular carcinoma caused by HBV infection. A proteomic approach was used to search for HBx-interacting proteins in order to elucidate the molecular mechanism of hepatocarcinogenesis. HBx was attached to myc and flag tags (MEF tags) and expressed in 293T cells; the protein complex formed within the cells was purified and characterized by mass spectrometry. COP9 signalosome (CSN) subunits 3 and 4 were subsequently identified as HBx-interacting proteins. In addition, CSN subunit 5, Jun activation domain-binding protein 1 (Jab1), was shown to be a novel cellular target of HBx. In vivo and in vitro interactions between HBx and Jab1 were confirmed by standard immunoprecipitation and GST pull-down assays. An analysis of HBx deletion constructs showed that amino acids 30-125 of HBx were responsible for binding to Jab1. Confocal laser microscopy demonstrated that HBx was mainly localized in the cytoplasm, while Jab1 was found mainly in the nucleus and partially in the cytoplasm, and that the two proteins colocalized in the cytoplasm. The cotransfection of HBx and Jab1 resulted in substantial activator protein 1 (AP-1) activation and knockdown of endogenous Jab1 attenuated AP-1 activation caused by HBx. In addition, the coexpression of HBx and Jab1 potentiated phosphorylation of JNK, leading to the subsequent phosphorylation of c-Jun, whereas the level of c-Jun and JNK phosphorylation induced by HBx was decreased in Jab1 knockdown cells. These results suggest that the interaction between HBx and Jab1 enhances HBx-mediated AP-1 activation.