We analyze the properties and stability of two-color discrete localized modes in arrays of channel waveguides where tunable quadratic nonlinearity is introduced as a nonlinear defect by periodic poling of a single waveguide in the array. We show that, depending on the value of the phase mismatch and the input power, such two-color defect modes can be realized in three different localized states. We also study resonant light scattering in the arrays with the defect waveguide.