Hematopoietic stem cells reside in specific niches in the bone marrow and give rise to either more stem cells or maturing hematopoietic progeny depending on the signals provided in the bone marrow microenvironment. This microenvironment is comprised of cellular components as well as soluble constituents called cytokines. The use of cytokines alone for the ex vivo expansion of stem cells in flat, two-dimensional culture flasks, dishes or bags is inadequate and, given the three-dimensionality of the in vivo bone marrow microenvironment, inappropriate. Three-dimensional culture conditions can therefore provide an ex vivo mimicry of bone marrow, recapitulate the desired niche, and provide a suitable environment for stem cell expansion and differentiation. Choice of scaffold, manipulation and reproducibility of the scaffold properties and directed structuring of the niche, by choosing pore size and porosity may inform the resident stem cells of their fate in a directed fashion. The use of bioreactors for cultivation of hematopoietic cells will allow for culture control, optimization, standardization, scale-up, and a "hands-off" operation making the end-product dependable, predictable and free of contaminants, and therefore suitable for human use and therapeutic applications.