Redox state is a widely used term for the description of redox phenomena in biological systems. The regulating mechanisms responsible for maintaining the redox state are not yet fully known. But it was shown that changes in the redox state might lead to a cascade of intracellular events, beneficial or deleterious to the cell. There are several methods for the description of the intracellular redox state. These methods are based on using measured intracellular concentrations of reduced and oxidized glutathione in the Nernst equation. However, glutathione is not always a basic redox component in biological fluids, organelles, cells or tissues. As a result, changes in the intracellular redox state are not always accompanied by considerable changes of glutathione concentration. In this work it was proposed to use the concept of effective reduction potential for the quantitative characteristic of the intracellular redox state. The effective reduction potential was substantiated on the basis of a thermodynamic description. A new equation for the calculation of the effective reduction potential was derived. This equation summarizes the contribution of different oxidizing and reducing agents in the formation of an effective redox potential. The theoretical estimation of the effective reduction potential values for the different biological fluids and cells was carried out with the use of a method developed.