The genetic relationship between 10 patients with clinical manifestations of rhizomelic chondrodysplasia punctata (RCDP) was studied by complementation analysis after somatic cell fusion. Biochemically, 9 out of the 10 patients were characterized by a partial deficiency of acyl-CoA: dihydroxyacetone phosphate acyltransferase (DHAP-AT) and an impairment of plasmalogen biosynthesis, phytanate catabolism and the maturation of peroxisomal 3-oxoacyl-CoA thiolase; 3-oxoacyl-CoA thiolase was strongly reduced in the peroxisomes of these patients. Fusion of fibroblasts from these 9 patients with Zellweger fibroblasts resulted in complementation as indicated by the restoration of DHAP-AT activity, plasmalogen biosynthesis, and punctate fluorescence after staining with a monoclonal antibody to peroxisomal thiolase. No complementation was observed after fusion of different combinations of the 9 RCDP cell lines, suggesting that they belong to a single complementation group. The tenth patient was characterized biochemically by a deficiency of DHAP-AT and an impairment of plasmalogen biosynthesis. However, maturation and localization of peroxisomal thiolase were normal. Fusion of fibroblasts from this patient with fibroblasts from the other 9 patients resulted in complementation as indicated by the restoration of plasmalogen biosynthesis. We conclude that mutations in at least two different genes can lead to the clinical phenotype of RCDP.