Characterization of a 2D ion chamber array for the verification of radiotherapy treatments

Phys Med Biol. 2005 Jul 21;50(14):3361-73. doi: 10.1088/0031-9155/50/14/012. Epub 2005 Jul 6.

Abstract

In this study we investigated the characteristics of a commercial ion chamber array and its performance in the verification of radiotherapy plans. The device was the 2D Array Seven29 model (PTW, Freiburg, Germany). This is a two-dimensional detector array with 729 ionization chambers uniformly arranged in a 27 x 27 matrix with an active area of 27 x 27 cm(2). The detector short-, medium- and long-term reproducibility have been tested through an extensive set of repeated measurements. Short-term reproducibility was well within 0.2%. Medium- and long-term reproducibility were within 1%, including set-up reproducibility errors and linac output fluctuations. Dose linearity was also assessed. The system response to dose was verified to be linear within the range 2-500 MU. Output factors matched very well pinpoint chamber measurements performed in the same experimental conditions with a maximum local percentage difference of 0.4%. Furthermore, the 2D Array sensitivity to millimetric collimator positional changes and to perturbation effect of irradiated area was tested. The comparison with ion chamber data carried out in water was very satisfying. Finally, measurements of wedge-modulated fields and IMRT beam sequence matched very well ion chamber dose profiles acquired in a water tank. The extensive tests performed in this investigation show that the 2D Array Seven29 is a reliable and accurate dosimeter and that it could be a useful tool for the quality assurance and the verification of radiotherapy plans.

MeSH terms

  • Humans
  • Male
  • Prostatic Neoplasms / radiotherapy*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / instrumentation*